Motivation. Develop a better understanding of charge transport in dye-sensitized metal oxides on an ultrafast timescale.

Specific Goal. Study the mechanism of electron transfer and trapping using time-resolved THz spectroelectrochemistry. Leverage time-resolved X-ray absorption to probe the change in electronic structure after electron transfer with element specificity.

Time-Resolved THz Spectroelectrochemistry (TRTSEC)

Figure 1. (left) Schematic of electron transfer and photophysical processes in RuP-sensitized anatase TiO₂. RuP is phosphonated Ru(bpy)₃. (right) TRTSEC measurement at various potentials showing suppression of trapping and injection from the ¹MLCT excited state.

Picosecond Time-Resolved X-Ray Absorption Spectroscopy (TR-XAS)

Figure 2. (top) TR-XAS spectrum and (bottom) dark XAS spectrum at the Ti K-edge showing an edge shift and enhancement of delocalized pre-edge features.

Figure 3. TR-XAS beamline at the Stanford Synchrotron Radiation Lightsource.

You can do part of your dissertation research at a DOE national laboratory too! Talk with your advisor and visit: https://science.osti.gov/wdts/scgsr